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AbstractThe performance of conjugate gradient schemes for minimizing unconstrained energy func-tionals in the context of condensed matter electronic structure calculations is studied. The un-constrained functionals allow a straightforward application of conjugate gradients by removingthe explicit orthonormality constraints on the quantum-mechanical wave functions. However,the removal of the constraints can lead to slow convergence, in particular when preconditioningis used. The convergence properties of two previously suggested energy functionals are analyzed,and a new functional is proposed, which uni�es some of the advantages of the other functionals.A numerical example con�rms the analysis.
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1 IntroductionThere is little need to motivate the interest of science in electronic structure calculations. Thedescription of the chemical bond is probably the most celebrated success. Many other importantproperties of matter, such as for example the response to electric and magnetic �elds, are alsodetermined by the electronic structure.The many-electron Schr�odinger Equation is well known, and describes the behavior of non-relativistic electrons correctly. It can be solved analytically for some important special cases likea uniform potential, the harmonic oscillator, or the hydrogen atom. For real materials such asmolecules or solids, where the potential is complicated, and several or even a large number ofelectrons are present, analytic solutions are not known. The numerical solution of the many-electron Schr�odinger equation in some external potential Vext(r),0@NelXi=1�12r2i + NelXi=1 Vext(ri) + NelXi=1;j>i 1jri � rjj �E1A	(r1; r2; : : : ; rNel) = 0 ; (1)becomes very demanding as the number of electrons Nel grows. Since the many-body wave function	(r1; r2; : : :rNel) is represented in the product space of the single-electron positions ri, the numberof degrees of freedom grows exponentially with Nel. A brute force approach is not feasible.Two di�erent, but similar approximations to the many-particle Schr�odinger equation have en-joyed great success during the last four decades: The Hartree-Fock (HF) approach and DensityFunctional Theory (DFT) in the Local Density Approximation (LDA). The Hartree-Fock equa-tions were discovered in 1951 [1], and were readily embraced by the quantum chemistry communitybecause they describe the chemical bond of molecules reasonably well, and also reproduce the ex-perimentally known binding energies of many molecules better than DFT/LDA. Density FunctionalTheory was founded in 1964 [2, 3], and is in principle an exact approach. However, it buries allthe di�cult many-body e�ects inside an \exchange-correlation" energy term Exc, which is provento exist, but no simple and exact expression is known for it. In the Local Density Approxima-tion, this exchange-correlation term is approximated by a simple functional form, which dependson the local electron density only. The recently developed Generalized Gradient Approximations(GGA) [4] improve upon the LDA by including the gradient of the electron charge density into Exc.The resulting computational procedure is not substantially di�erent from the LDA, but the resultsare in general more accurate, e.g. binding energies are comparable or better than those from HFcalculations.Both HF and DFT/LDA reduce (1) to a single-particle problem, such that the individual par-ticles are decoupled, and interact with each other only through an average e�ective potential. Thissimpli�es matters substantially, and renders calculations on real materials feasible. The equationsof DFT/LDA are somewhat simpler than the ones of Hartree-Fock, and allow for larger systems.These days, up to several hundred atoms can be treated within DFT/LDA[5]. Many algorithmshave been proposed to solve the DFT/LDA equations (see, e.g. [6, 7, 8, 9, 10]), but the search formore e�cient schemes is still an active �eld[11].2 FormalismFrom a computational point of view, the DFT/LDA electronic structure problem is simply a mini-mization of a function in a large parameter space. This section will motivate the objective function,4



and give a brief introduction to the subject.The fundamental theorems of DFT are that a) the ground state energy of a quantum-mechanicalsystem is a functional of the electron number density �(r) only, and b) the true ground state densityminimizes this functional[2]. Although in principle the ground state energy E of an electron systemis a functional of �(r) only, in practice a \Kohn-Sham" expression[3] is used for accuracy reasons,involving single-particle wave functions j ii; i = 1; : : :m. Restricting the system to be a spincompensated insulator with Nel electrons, the m = Nel=2 wave functions fj ig correspond toorbitals occupied by electrons. The Kohn-Sham functional then readsE0 = minfj igE[fj ig] = minfj ig 2 mXi=1h ij � 12r2j ii+ F [�] : (2)The electron number density �(r) is a scalar function of the spatial position r, and depends on thewave functions as �(r) = 2 mXi=1 jh ijrij2 : (3)The functional F [�] contains the ionic, exchange-correlation, and Hartree energy of the Kohn-Sham functional [3]. Minimizing (2) seems straight forward, but is impeded by the orthonormalityconstraints h ij ji = �ij .Fortunately, the �rst derivative of E with respect to the parameters j ii is available:@E@h ij = 2Ĥj ii (4)Ĥ = �12r2 + V̂ (5)V̂ = Zr d3r �F��(r)jrihrj : (6)This derivative does not take the orthonormality constraints into account. Both the Hamiltonianoperator Ĥ and the potential operator V̂ are in general Hermitian operators, but for simplicity willbe assumed real and symmetric here.The constraints can be treated by introducing a set of Lagrange multipliers �i; i = 1; : : : ; m(also known as Kohn-Sham eigenvalues), such that (2) becomes a non-linear eigenvalue problem�Ĥ[�]� �i� j ii = 0 ; i = 1; : : : ; m ; (7)where the operator Ĥ [�] depends on the solutions fj ig through (3), (5), and (6). The standardprocedure for many years has been to solve (7) with a fast, iterative eigensolver, then update � andĤ[�] by forming � from the m eigenvectors with the smallest eigenvalues �, and solve again, until\self-consistency" is achieved. For a large number of electrons, this scheme becomes unstable, andit is more e�cient [7, 6, 8, 9] to directly minimize (2).A di�erent, but simpler functional than (2) is the \non-selfconsistent" functionalEnon�scf [fj ig] = 2 mXi=1h ijĤfixedj ii; h ij ji = �ij ; (8)in which the operator Ĥfixed does not depend on �. This functional represents simply an eigenvalueproblem, and can be e�ciently minimized by an iterative eigensolver, e.g. based on the Davidson[12]5



or Lanczos[13] schemes. However, these eigensolvers have not been designed to handle a matrix Ĥthat depends on the eigenvectors.In the following sections, the unconstrained functionals will be developed based on the non-selfconsistent functional (8). This simpli�es the presentation substantially. At �rst it seems likeEnon�scf is a rather di�erent problem than the original one (2). However, if just H [�] is updated asthe fj ig converge (i.e. at any instance � is consistent with fj ig), it retains one essential featureof the original functional: it yields the same �rst derivative, provided that the dependence of Ĥon � is ignored when the derivative is computed. This means that the algorithms presented beloware easily generalized to the \self-consistent" case by keeping H and fj ig consistent. Where thedi�erences between (2) and (8) become important, special mention will be made.An explicit representation of the wave functions fj ig allows a compact matrix notation. Ex-panding in terms of a �nite set of N orthonormal basis functions fj'ig:j ii = NXl=1 Ylij'li ; (9)the orthonormality constraint can be expressed asY TY = Im; (Im is the m�m identity) ; (10)since column i of Y contains the expansion coe�cients of j ii. For simplicity, Y is assumed tobe real. N varies depending on the basis set and the system under study, but for the popularplane-wave basis used in the subsequent test calculations, N typically ranges from 20 to 1000 timesm. Thus Y is a (N �m) tall and skinny matrix. With the expansion (9) the operator Ĥ turns intoa matrix H , and the objective function (8) becomes:E?[Y ] = 2tr(Y THY ); Y TY = Im ; (11)where the subscript ? denotes that the Y are subject to orthonormality constraints.3 Minimizing the Constrained FunctionalAll eigensolvers minimize (11) when they compute the smallest eigenvalues and correspondingeigenvectors. In particular the trace minimization algorithms [14] expose this concept explicitly. Astraight forward use of e.g. the conjugate gradient algorithm is not possible, because the columns ofY have to be kept orthonormal during the iteration[8]. The inclusion of the constraint is not trivial,and many algorithms proposed in the literature do not exhibit some of the desirable properties oftrue conjugate gradients, such as quadratic convergence near the minimum[15]. Admittedly, theregime of quadratic convergence is never reached in practice, since the dimensionality of the searchspace (up to several millions) is orders of magnitude larger than the number of iterations (a fewhundred at the most). However, since most of the proposed algorithms cannot claim to progress inconjugate directions, it is questionable if the rate of convergence in the linear convergence regime isas good as conjugate gradients. This has been pointed out in a recent paper by Edelman et al [16],who present a \correct" conjugate gradient algorithm with superlinear speedup near the minimum.The present work will not discuss the constrained minimization, but follow the lines of St��ch etal [9], and eliminate the constraints by rewriting the objective function (11).6



4 Unconstrained Functional with Overlap Matrix InversionThe constraints in (11) can be removed by transforming to a set of vectors X spanning the samesubspace: Y = XS�1=2; S = XTX ; (12)but not necessarily being orthonormal. The overlap matrix S is a measure of the non-orthonormalityof X . This approach has been used for electronic structure calculations before[9, 10], especially fororder-N schemes[17, 18]. In terms of X the energy functional reads:ES�1 [X ] = 2 tr(S�1XTHX) ; (13)but now there are no constraints, and a standard optimization technique can be used to minimizeES�1 [X ], which is a function of Nm variables. Since Nm can easily grow to several millions,conjugate gradients is the method of choice.Conjugate gradients needs two basic ingredients: the gradient of the objective function, and arule how to do the line search. For ES�1 [X ], the gradient is@E@Xij = 4 hHXS�1�XS�1(XTHX)S�1iij : (14)From the gradient, a search direction D (a N � m matrix) is computed according to e.g. thePolak-Ribi�ere prescription[19]. Once D is picked, a line minimization is performed along D:mint ES�1 [X(t)] = mint 2 tr(S�1(t)X(t)THX(t)) (15)X(t) = X + tDS(t) = X(t)TX(t) :At this point, one should use the true energy functional (2) { suitably generalized to nonortho-normal wave functions X { to do the line minimization. However, it is more convenient and fasterto minimize the non-selfconsistent functional ES�1 [X(t)] instead. Then, the line minimizationbecomes an inexact one. Our experience however shows that the inexact line search degrades therate of convergence of the algorithm only negligibly.Even using the simpler non-selfconsistent functional, the line search is cumbersome, becauseone has to �nd the minimum of (15) by numerical methods, and for each trial step length ttrial,S�1(ttrial) has to be computed. This is one of the main motivations for the approximate functionalspresented later.In order to compare ES�1 [X ] with the other functionals discussed below, it is useful to un-derstand the rate of convergence with which a conjugate gradient scheme will minimize (13). Forquadratic forms, one can �nd rigorous upper bounds on the convergence rate of the conjugategradient algorithm in the regime of linear convergence[20]. Linear convergence is observed whenthe eigenvalues are su�ciently spread out, and the number of iterations is much smaller than thenumber of distinct eigenvalues. Then, the error �k in the objective function at iteration step k isbounded by: �k � 2 pc� 1pc+ 1!k �0 : (16)Here, c is the condition number of the Hessian matrixH associated with (13). When the eigenvaluesare clustered, then the conjugate gradient algorithm may converge much faster than the above7



bound indicates. Indeed, in the absence of roundo� error, the algorithm will converge in k stepson a matrix with only k distinct eigenvalues. To get insight into the expected rate of convergencenear the minimum, we compute the eigenvalues of H following Ref.[18]. Since the eigenvectorsy(0)i corresponding to the smallest eigenvalues �i; i = 1; : : :m are known to minimize (13), one canchoose them as the origin: xi = y(0)i + NXl=1 c(i)l y(0)l ; (17)and express the deviation in terms of the full spectrum of the N eigenvectors of H . Inserting (17)into (13) yields to second order in the expansion coe�cients c(i)l :ES�1 �E0 = 2 mXi=1 NXk=m+1(�k � �i)(c(i)k )2 : (18)Notice that the sum over k covers the full spectrum beyond m, but the sum over i is just overthe m eigenvectors with smallest eigenvalues. Since the � are labeled in ascending order, we canimmediately read o� the smallest eigenvalue of H as 2(�m+1 � �m) and the largest as 2(�N � �1).Hence the condition number c of H is determined by the ratio of H 's spread and \gap":c = �N � �1�m+1 � �m : (19)For fast convergence, a large gap and a small spread are necessary. Because (�N��1) � (�m+1��m),of course, c � 1.5 Unconstrained Functional with Approximate Overlap MatrixInversionAs has been pointed out in section 4, the inverse of S in the functional ES�1 [X ] is undesirable.Assuming for the moment that the columns of X are almost orthonormal, S�1 is to �rst order in(S � I): S�1 � (2I � S) : (20)After shifting H by � to be negative de�nite, one can show[18] that the resulting functionalE2I�S [X ] = 2 tr((2I � S)XT(H � �)X) (21)still has the \right" minimum. This means that theX minimizing E2I�S [X ] span the same subspaceas the X minimizing ES�1 [X ] or the Y obtained by minimizing E?[Y ]. In fact, at the minimum(21) automatically yields[18] a set of orthonormal X . With a proper choice of � (potentially alarger value) this holds also for the self-consistent functional, not just for the non-selfconsistentfunctional in (21). The intuitive reason for the automatic orthonormality of X at the minimum isthat E2I�S [X ] has built-in \forces" driving the X to become orthonormal, which in turn justi�esthe expansion (20).The aforementioned \forces" become evident when an expansion (17) of E2I�S [X ] around theminimum is carried out as in section 4. To second order one obtainsE2I�S �E0 = 2 mXi=1 NXk=m+1(�k � �i)(c(i)k )2 + mXi=1 8(� � �i)(c(i)i )2 (22)8



+ mXi;j=1;j>i 8(� � �i + �j2 )0@c(j)i + c(i)jp2 1A2 :In addition to the �rst term (also present in (18)), there is the second term which drives the Xto be of unit length, and the third term leading to orthogonality. Eq. (22) shows that the shift �should be at least � > �m to make all eigenvalues of the Hessian H2I�S positive. For X(0) to be aglobal minimum of (21), � must be greater than the largest eigenvalue �N .To get fast convergence, � should be chosen such that the condition number of H2I�S is assmall as possible. In other words, the eigenvalues of H2I�S from the second and third term shouldfall within the range of eigenvalues generated by the �rst term. The proper choice of � is:�m+1 � �m4 + �m � � � �N � �14 + �1 : (23)In case such an � exists, the condition numbers of H2I�S and HS�1 are identical, and thereforethe conjugate gradient algorithm converges at the same rate. A numerical example of this will beshown in section 8.The main advantage of E2I�S over ES�1 is the simplicity of the line minimization, which nowdoes not involve an explicit inverse of S. Rather, the line minimization can be done exactlyby �nding the minimum of a fourth order polynomial (this is only valid for the non-selfconsistentfunctional). The order-N schemes prefer E2I�S because it does not involve a poorly scaling explicitmatrix inverse.6 Improved Unconstrained Functional with Approximate Over-lap Matrix InversionAs shown in section 5, the expansion (20) of the matrix S�1 to �rst order simpli�es the lineminimization, and automatically[18] leads to orthonormal vectors X . However, the Hessian matrixis altered, which could increase the condition number. The functional presented in this sectionmaintains the simplicity of E2I�S but reduces the potentially adverse e�ects on the Hessian matrix.It has been proven[18] that the expansion of S�1 in (13) to even orders in (S � I) also yields afunctional which has orthonormal X(0) at the minimum, but now H has to be shifted to be positivede�nite. Furthermore, the X(0) at the minimum span the subspace in which ES�1 is minimal.Expanding S�1 to second order in (S � I) yields the �rst term of the functionalE3I�3S+S2 = 2 tr((3I � 3S + S2)XT(H + �0)X) + 2� tr((S � I)2) : (24)Here, �0 should be chosen to make H + �0 positive de�nite, and a second term with � in front hasbeen introduced to facilitate the minimization. Obviously, this new term will vanish at the minimumwhen S = XTX = I , and for � > 0 will drive the X to become orthonormal. At �rst it seems fromthe proof in Ref.[18] that there is no need for the second term in (24), since the X should becomeautomatically orthonormal. Its need will become clear when the Hessian matrix H3I�3S+S2 of (24)is discussed in the following paragraph.Using the expansion (17) of E3I�3S+S2 around the minimum as in section 4 yields:E3I�3S+S2 �E0 = 2 mXi=1 NXk=m+1(�k � �i)(c(i)k )2 + 8�0B@ mXi=1(c(i)i )2 + mXi=1;j>i0@c(j)i + c(i)jp2 1A21CA : (25)9



Now, the only second order terms leading to orthonormality are due to the second expression in(24). Without it, a conjugate gradient scheme cannot be used to minimize E3I�3S+S2 , since therewould be special directions in parameter space along which the objective function has vanishing�rst and second derivatives, but is not completely at (as it is in the case of ES�1). As numericalexperiments show, an attempted conjugate gradient minimization of (24) with � = 0 stagnates ata �nite error.The line minimization for E3I�3S+S2 is only slightly more e�ort than for E2I�S. Instead ofa fourth order polynomial, now a sixth order polynomial needs to be minimized. To get fastconvergence, � should be picked analogously to � in (23) such as to minimize the condition numberof H3I�3S+S2 : �m+1 � �m � 4� � �N � �1 : (26)In contrast to E2I�S , the shift �0 of H can be picked without impact on the Hessian matrix nearthe minimum. Furthermore, there always exists a � for which (26) is satis�ed. The same need notbe true for � in (23). Notice that only a single eigenvalue of 8� is introduced to H3I�3S+S2 bythe second term in (24), whereas in (22), there is a range of eigenvalues due to the orthonormalityterms.In case a proper shift � exists for E2I�S , and � in E3I�3S+S2 satis�es (26), the two functionalsshould show the same rate of convergence. In practice, this is often the case if no preconditioning isused. Under preconditioning, the di�erences between E2I�S and E3I�3S+S2 do become important(section 8).7 PreconditioningPreconditioning[20] accelerates the convergence of the conjugate gradient scheme by using a (Nm�Nm) matrix K which, when applied from the left to the Hessian matrix H, brings the conditionnumber of KH as close as possible to one. Preferably, the application of K should not increase theoperation count signi�cantly. A simple and e�ective diagonal preconditioner[6] is known for thecase when a Fourier basis is used in (9) to represent the wave functions. First, an approximateinverse K of H is constructed, and then an approximate inverse K of H is deduced.When Fourier expanding the (not necessarily orthonormal) wave functions fj�ig correspondingto X , hrj�ii =XG x(i)(G)eiG�r ; (27)the vector indices are ordered ascending with jGj, and the expansion is truncated at a suitablylarge jGj = Gmax. The Hamiltonian operator Ĥ = �12r2 + V̂ turns into a matrix:HGG0 = 12 jGj2�GG0 + VGG0 : (28)By construction, VGG0 decays for large jGj or jG0j, so for large G, G0, the \kinetic energy" term12 jGj2�GG0 dominates, and H is almost diagonal. This is exploited to construct an approximateinverse K of H which is essentially the one from Ref. [6]:KGG0 = �GG0 27 + 18s+ 12s2 + 8s327 + 18s+ 12s2 + 8s3 + 16s4 (29)s = jGj2=T : 10



The parameter T determines the value of jGj for which the preconditioner K starts to become /1=jGj2�GG0. For jGj2 < T , the preconditioner in (29) approaches the identity, since the assumptionof H being diagonal is not valid here, and it is better not to precondition. In practice, T is chosento be the maximum \kinetic energy" T = maxi 12PG jGj2(x(i)(G))2 of all columns x(i) i = 1; : : :m.This turns out to give a good estimate for the regime jGj2 > T where the diagonal terms startdominating HGG0. In principle, K must be kept �xed during the course of the minimization toget truly conjugate directions. Numerical experiments show that T changes only little as the x(i)converge, and sacri�cing exact conjugacy by adjusting K does not change the rate of convergence.With K as an approximate inverse of H at hand, the preconditioner K is constructed byreplicating K onto the diagonal of K. This preconditioner reduces the condition number of H bycompressing the spectrum of H . As a consequence, it becomes more di�cult or even impossibleto �nd a proper choice of � in ES�1 to satisfy the condition (23). At that point, the more liberalcondition (26) gives the functional E3I�3S+S2 an advantage over ES�1 . The numerical example insection 8 will illustrate this.8 Numerical ExampleIt is instructive to look at a simple, but relevant example for testing the statements of the precedingsections. Here, the performance of the conjugate gradient algorithm is studied for a diamondcrystal. Only the valence electrons are treated, assuming the core electrons do not participate inthe chemical bond. The ionic cores are represented by norm-conserving pseudopotentials [21] in aseparable Kleinman-Bylander form[22]. The pseudopotentials are designed to give the same energyE as the real potential, but with a much smaller Fourier basis set. Since there are two atoms inthe unit cell with two valence electrons per spin for each atom, one needs to compute m = 4 wavefunctions. In the plane-wave representation, the matrix H has a size of N = 609. This is muchsmaller than typical problem sizes studied today, but it allows to use MATLAB and an explicitrepresentation of H for numerical experimentation. For larger matrix sizes, a straight forwardparallelization is possible [23].A direct diagonalization of the full matrix is �rst performed to get the spectrum shown inthe inset of �gure 1. The smallest four \occupied" eigenvalues are grouped into a smaller singleeigenvalue and a triplet. They are well separated from the larger, \unoccupied" eigenvalues. Thisgap is critical for achieving fast convergence, since it a�ects the condition number of the Hessianaccording to (19).The starting guess for the conjugate gradient procedure is generated by diagonalizing a 27 by27 submatrix from the upper left corner of H , and selecting the smallest four eigen pairs. Theother (609-27) components of the start vectors are �lled up with 0.001*rand() to ensure that thefull spectrum is represented in the starting guess. The resulting vectors are orthonormalized withthe MATLAB orth() command.Without preconditioning, all three functionals ES�1 , E2I�S , and E3I�3S+S2 should exhibitsimilar convergence rates when minimized with a conjugate gradient algorithm. According toEq. (23), the functional E2S�I should perform best for 2:01 � � � 15:41. Likewise, from (26),E3I�3S+S2 should give best performance for 0:11 � � � 15:05. Figure 1 shows the number ofiterations to reach an error of 10�13 as a function of � (for E2S�I) and � (for E3I�3S+S2). SinceES�1 has no free parameters, it is represented by a horizontal line corresponding to 48 iterations.As is obvious from Fig. (1), as long as the parameters � and � are chosen within the intervalsgiven by (23) or (26), all three functionals lead to the same rate of convergence. Once � or � are11



outside these intervals, the condition numbers of the Hessian matrices for E2S�I and E3I�3S+S2increase, and the convergence slows down.Under preconditioning, convergence is more rapid (ES�1 converges in 16 instead of 48 iterations),but the functionals E2S�I and E3I�3S+S2 now show more sensitivity to the choice of � and � (Fig.2). The parameter T for the preconditioner (29) has been set to T = 4 (the physical units areRydbergs) in order to be sure the same, �xed preconditioner is used for all functionals. No shift �exists for which E2S�I converges as fast as ES�1 . In contrast, for � = 0:4 : : :1:0, E3I�3S+S2 showsthe same performance as ES�1 .9 ConclusionThree di�erent variants of unconstrained energy functionals, ES�1 , E2S�I , and E3I�3S+S2 forelectronic structure calculations have been studied comparatively. The rate of convergence for aconjugate gradient minimization of those functionals is discussed. While ES�1 does not require anyshift parameters and performs best under preconditioning, it has the disadvantages of a tediousline minimization and an explicit inversion of a (small) matrix. The functional E2S�I , whichhas been previously used for order-N calculations[18], is found to be sensitive to the choice ofits free parameter �, and, under certain circumstances, does not achieve optimal performanceunder preconditioning. A new functional E3I�3S+S2 is proposed which is less sensitive to its shiftparameter �, while avoiding the complicated line minimization of ES�1 .10 AcknowledgmentsB.G.P. acknowledges useful discussions with S. G. Louie, and particularly with F. Mauri. A.Canning is thanked for his critical reading of the manuscript. This work was carried out at theNational Energy Research Scienti�c Computing Center (NERSC), and is based in part upon worksupported by the Advanced Research Projects Agency contract No. DAAH04-95-1-0077 (via sub-contract No. ORA4466.02 with the University of Tennessee), the Department of Energy grantNo. DE-FG03-94ER25219 and DE-AC03-76SF00098, and contract No. W-31-109-Eng-38 (via sub-contract Nos. 20552402 and 941322401 with Argonne National Laboratory), the National ScienceFoundation grant Nos. ASC-9313958, ASC-9005933, CCR-9196022, and NSF Infrastructure GrantNos. CDA-8722788 and CDA-9401156.
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Figure 1: Number of iterations to reach an error of 10�13 in the objective functions. On theabscissa are the shift parameters � or � for a conjugate gradient algorithm performed on the energyfunctionals ES�1 , E2I�S , and E3I�3S+S2 . No preconditioning is performed. The inset shows thespectrum of the matrix H . According to (23) and (26), the rate of convergence should be the samefor all functionals if 2:01 < � < 15:41 and 0:11 < � < 15:05.Figure 2: Number of iterations to reach an error of 10�13 in the objective functions. On theabscissa are the shift parameters � or � for a conjugate gradient algorithm performed on the energyfunctionals ES�1 , E2I�S , and E3I�3S+S2 . The preconditioning results in better performance, butalso in increased sensitivity to the choice of the parameters � and � for E2I�S and E3I�3S+S2 .
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